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Abstract

Critical conditions for shear localization in thermoviscoplastic

materials are obtained in closed form for idealized models of simple shearing

deformations. The idealizations, which include the neglect of heat

conduction, inertia, and elasticity, are viewed as quite acceptable for many

applications in which shear bands occur. Explicit results obtained for the

idealized, but fully nonlinear problem show the roles of strain rate

"K sensitivity, strain hardening, and initial imperfection on the localization

behavior. Numerical solutions for two steels are shown to exhibit the

*principal features reported for torsional Kolsky bar experiments on these

steels. Mathematically exact critical conditions obtained for the fully

nonlinear problem are compared with critical conditions obtained by means of

linear perturbation analysis. Use of relative changes instead of absolute

v changes in the linear perturbation analysis gives better agreement with the

predictions of the fully nonlinear analysis.

'.4.
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1. Introduction

Shear instabilities in the form of shear bands are commonly observed in

metals and polymers subjected to large deformations. The formation of a shear

band is often an immediate precursor to rupture of the material. Even when

* rupture does not occur, the development of shear bands generally reduces the

performance of the material. Thus, improved understanding of shear band

formation is critical to the development of improved materials and components

made from these materials.

Shear bands can be divided into two types: those in which thermal

s-.ftening plays a negligible role in their formation and those in which

thermal softening plays a primary role. In the former case the shear bands,

sometimes called isothermal shear bands, form as a result of strain softening

due, for example, to material damage, to the development of soft textures, or

to phase transformations. In the latter case the shear bands, often called

adiabatic shear bands, form as the result of an autocatalytic process: an

increase in strain rate in a weaker zone causes a local increase in

temperature which in turn, for a thermal softening material, causes a further

increase in strain rate.

In this paper we consider both types of shear bands. We limit our

A.'attention to simple shearing- deformations. Two fundamental questions

regarding the cri-tical conditions for shear band formation are addressed.

1. For a given constitutive law, will shear localization occur for a

sufficiently large shear?

2. If so, what is the critical shear -1c, outside of the shear band, for

which the catastrophic process occurs?

As background for this study we note that an analysis of the stability of

homogeneous simple shearing deformations has been presented by CLIFTON (1978)
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for quasi-static deformations and BAI (1982) for dynamic deformations. They

used a classical, linear perturbation analysis in which the coefficients in

the linear differential equations for the perturbations were assumed to vary

sufficiently slowly that these variations could be neglected in estimating the

rate of growth or decay of fluctuations from the homogeneous solution. This

procedure determines a critical strain at which fluctuations begin to grow;

however, this initial growth may or may not lead to instability depending on

the neglected effects of the time dependence of the coefficients and the

*. nonlinearity of the complete system of equations. MOLINARI and CLIFTON (1983)

and MOLINARI (1984, 1985) have presented some analytical solutions of the

fully nonlinear problem under quasi-static and adiabatic (no heat conduction)

conditions. With these solutions available for measuring the reliability of

more simple approaches for determining the onset of instability, MOLINARI

(1985), and FRESSENGEAS and MOLINARI (1987) developed a so-called relative

linear perturbation analysis that accounts, in part, for the non-steadiness of

the homogeneous solution by linearizing in the relative perturbation defined

as the perturbation divided by the corresponding unperturbed quantity. This

approach has been shown to give predictions, as to whether or not shear bands

will form, that are more in agreement with the fully nonlinear theory than are

predictions based on classical -linear perturbation analysis. DAFERMOS and

HSIAO (1983) obtained a priori estimates of the asymptotic behavior of the

solution of the nonlinear problem (including inertia, but not heat conduction)

for the case of a Newtonian fluid with temperature-dependent viscosity.

TZAVARAS (1984) extended these results to the case of non-Newtonian fluids

* with temperature-dependent viscosities.

Numerical solutions of the fully nonlinear system of equations have been

presented by several authors: SHAWKI, CLIFTON and MAJDA (1983), SHAWKI

.5
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(1986), WRIGHT and BATRA (1985), MOLINARI (1985). From these solutions one

can conclude that dynamical effects and heat conduction are relatively

unimportant for steel specimens, with lengths of 5-10 mm, subjected to

shearing rates of 103s-1 as in the torsional Kolsky bar experiments of COSTIN,

CRISMAN, HAWLEY and DUFFY (1979), and HARTLEY (1986). Thus, in this paper we

neglect dynamical effects and heat conduction in order to present an

analytical approach to the fully nonlinear problem of thermoviscoplastic

localization in simple shear. Our aim is to obtain simple analytical formulae

for determining whether or not a shear strain localization instability will

. occur and, if so, the critical strain 7c at which the localization becomes

catastrophic. The boundary conditions will, in some cases, be general whereas

in others they will be restricted to a constant imposed shear stress or a

constant imposed velocity. Isothermal shear bands are ccnsidered in Section 2

and adiabatic shear bands are considered in Sections 3 and 4.

-P
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2. Isothermal problem

we consider a simple shearing deformation of strain hardening material

with strain-rate sensitivity. For illustration, we consider the following

constitutive law:

T=f(M >0)(1

where Tz is the shear stress, -y is the shear strain and y is the shear rate.

y. The function f(-y) takes account of the strain hardening. This function is not

necessarily monotonically increasing in order to account for possible strain

softening.

Suppose that, for a constant applied strain rate -y, the shear stress T

passes through a maximuma. Will strain localization occur? By localization we

mean that in some narrow region, the strain becomes much larger than

elsewhere. More precisely, we can define two types of localization.

LP localization

.4. If the heterogeneity of the solution is growing so that at time t, a

region R (necessarily narrow) exists where y/> P withy representing

the average deformation and P being a large number, then Lp localization

of the deformation is said to occur.

L..localization

If f or. every point A dif ferent f rom B, the ratio _/B/7YA tends to

infinity with increasing time, then L,, localization of the deformation at

the point B is said to occur.

The analysis of localization in this section is performed in two

different ways. First we derive an analytical solution of the fully nonlinear

problem. Then an absolute and a relative linear perturbation analysis

.4A
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are performed and the corresponding predictions are compared with the exact

solution.

2.1 The nonlinear theory

We consider a slab with a geometrical defect. The width i(y) is

nonuniform as shown in Figure 1. Using the same approach as HUTCHINSON and

NEALE (1977) for the uniaxial tension of a bar, we get from the equilibrium

equation written at two different points A and B:

2ATA = 1A f(7A)(TA) m = iBTB = 1B f(YB)(YB)m • (2)

Taking the power 1/m of each term, we get after integration:

A B

2A//m f (f(;)i/m d; = B'/m (f(;))i/m d; (P)o Yo

7A B

whewhere and 7y are the initial strains at points A and B. If (f(;))i/ is

integrable at infinity, then the values of the integrals are finite. While

maintaining the equality (3), let YB and YA he increased until the strain

becomes infinite at one of the two points, say B. Then there exists for each

a finite strain 7A for which Eqn. (3) is satisfied. Hence, we have L.

localization of strain if and only if the function (f(;))i/m is integrable at

. infinity.

Let us consider two examples:

-' (a) f(C)aO as C--:

Assume that f(;) has power law behavior at infinity of the form

f(;) ~a -P as - (4)

A-' A &'P.U . .. . . . . . . . . - - -. .- -. . .'....- -.. - . < '. .' ' " ' - ' . .- - .-'
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where a and p are positive constants. Then, from the integrability condition

4..| (3), the deformation exhibits L. localization if and only if

4-p + m < 0 (5)

This condition illustrates the stabilizing effect of the strain-rate

sensitivity for m > 0. Even if the material is strain softening (p > 0),

localization will occur only if m is sufficiently small (m < p) (Figure 2c).

If localization does occur, the critical localization strain can be

easily calculated. Let us consider the following function h defined for each

point M of the slab:

-40

0 h(M) 21/M (f(;))/ a (6)

0
,7M

Localization of strain will occur at the point B where the function h is a

minimum. The critical localization strain 7y at a point A is given by the

implicit equation.

c C
,i/m A (f())))/I d; = 21/m d(ff.rl/d (7)

In the particular case where +he initial strain 70 is uniform the localization
will occur at the points B where the width 1B is minimum.

For m - p > 0, L. localization does not occur. Indeed, it is readily

shown in Appendix A that

lim (/B/TA) = (AA/RB)/(m-P) (8)

4i * +  "

4, : This quantity tends to infinity as m - p - 0 Then, according to our

-definition, Lp localization occurs for m - p small enough (Figure 2b).

>'.

-"- * - - . - .. .- ... - --. .4 . . . . .:. -......... ..-.. ? ... .-. *.? - . ... ' .; -.-. -.-- .! ,--.'''-. .'-. 4 .--'" .. ' . '* ". -4 - ' - ' "• 4. . ..'.. .•. .,.,. .... .- "-"..., , .-4- ," " '- " ' ,
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,-. ~(b) f(C) - Las(< -

In the second example, we consider a function f(;) for which the limit at

infinity exists

lim f(;) = L > 0 (9)

Then the result in appendix A combined with Equation (3) shows that:

.".' ;B -/A
(A/ B) 1/m j f(r,1/m d;/ J f( )!/m d; (Ll/m YB) (Ll/m 7A)

(10)
= YB/Y/A as 7A •

The shape of the curve 7A 7B is shown in Figure 3 for 7 7A. As 7B passes

0 through the strain at which f(TB) is a maximum the ratio YB/TA increases

strongly. It is then possible that YB/7A takes on large values, say ) P.

' Thus, Lp localization may occur just after f(7B) passes through a maximum. As

the deformation continues, the ratio 7B/7A decreases and tends to 7B/'AI -

(fA/RB)l/m. If (A/2B)I/m is not large enough, Lp localization does not occur

as -y . Therefore, Lp localization may occur after the maximum of f(y) is

reached, and disappear for larger deformations.

Strain rate sensitivity has a strong stabilizing effect on the asymptotic

behavior of the solution. For example, consider a 1% geometrical defect:

10/ = 0.99

Values of (TB/TA)= (2A/B)l/n are given in Table 1 for different values of m

................'-..... .. * * ...



-9-

Table 1:

Influence of Strain Rate Sensitivity on the
Asymptotic Behavior of Plastic Flow
(geometrical defect: 1B/JA = 0.99)

m 0.2 0.1 0.01 0.006 0.001

(TB/YA)- 1.052 1.106 2.732 7.464 2.316 x 104

A value m = 0.01 is sufficient to prevent pronounced localization as ' -.

For small values of m (say m < 0.005) Lp localization occurs as 7 - -.

These examples illustrate that a maximum in the stress-strain curve does

not lead necessarily to the localization of plastic flow.

2.2 Linear Perturbation Analysis

It is interesting to compare the results of the fully nonlinear theory to

the predictions of a linear stability analysis. For this comparison consider a

block of uniform thickness i(y) = go undergoing homogeneous simple shearing

deformation o(t). Let sy = 7(y,t) - -yo(t) be the difference between the

shear strain y(y,t) for the same block subjected to the same boundary

conditions, but having a fluctuation in strain and strain rate beginning at

some time to. Using the constitutive law (1) and considering the problem as

quasistatic (6 T = 0) we obtain:

57 , - - f (9)

57 f (70) m

when sy is sufficiently small. Equation (9) shows that, at least initially,

the strain difference 6y grows when f'(y) < 0 i.e. when strain softening

occurs. If strain hardening occurs, i.e f' (7) > 0, then the strain difference

4IN

~~~~~~~~~~~~~~~~~~~~~~~~~..............•,. ..... ,.-... .. ,.....- ... g ,../ ' ' , : . ....
F ; ";......",""""."e $"- "".* .''""..o ". '... , ._. ...... , .. .,... .. ,..'... .%....,-. ., . ' ' -. .",. '" . . . .
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s7 decays initially. Because the right side of Equation (9) is independent of

the coordinate y, the growth or decay of the strain difference is such that

the ratio of the strains 5YA and 57B at points A and B remains constant. Thus,

Equation (9) provides no information on strain localization.

4p From this linear analysis we see that whether small perturbations of a

homogeneous shearing deformation are expected to grow or decay initially

depends only on the sign of f'(yo), the slope of the stress-strain curve at a

constant strain yo. However, from the nonlinear analysis, we know that

whether or not localization will occur is not governed by the value of fl(Yo),

but by the strain rate sensitivity parameter m and the behavior of f(y) as

y--. The condition f'(7) < 0 is a necessary and sufficient condition for the

0initial growth of perturbations of a homogeneous deformation whereas f'(/) < 0

-' for 7 greater than some critical value yc is only a necessary condition for

localization to occur. This tendency for the linear perturbation analysis

based on (9) to predict the growth of small perturbations under relatively

weak restrictions on the constitutive equations can be partially offset by

considering the relative perturbation

(10)
.70

The relative perturbation A7 tends to grow more slowly than the absolute

-. perturbation 67 and may even decay as the perturbation grows.

From (9) and (10) we obtain after logarithmic differentiation

7 -o [ Y' (Y0) + o

A7 Sy 70 m f (7 0 ) 70

. *% .. - U



Integration of (1i) gives

A1 = K . (12)

4'Yo

If f(70 ) has the behavior (4) for large values of -0, then as /o-- the

relative perturbation Ay becomes unbounded for -p + m < 0 and approaches zero

for -p + m > 0. These conditions are, respectively, the same as the critical

conditions (See example (a) of the previous section) for Lp-localization to

occur or not. This parallellism between predictions of the linear relative

perturbation analysis and the exact results for the nonlinear theory suggests

that linear relative perturbation analysis may be more widely useful in

predicting the stability of deformations than is the commonly used linear

perturbation analysis represented by Equation (9). However, we emphasize that

the localization analysis in the nonlinear theory and the linear relative

perturbation analysis address different problems and there is no a priori

reason to expect that the critical conditions for L.-localization are, in

general, the same as the critical conditions for predicted unbounded growth of

a relative perturbation.

. d%.

* J..
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3. Adiabatic Case

We consider next the influence of temperature on localization. As

discussed in the introduction, the deformation is assumed to be adiabatic and

quasistatic. We consider the constitutive equation

T = T (y, y, e), (13)

the equation of equilibrium

1(y) T(y,t) = 2(h) T(h,t), (14)

,he compatibility equation

av
= -- , (15)

8y

and the energy equation

ae
pC- =  T 7 (16)
at

In these equations p is the mass density, C is the heat capacity per unit

mass, 8 is the absolute temperature, v is the particle velocity, and 3 is the

Taylor-Quinney coefficient which characterizes the fraction of plastic work

that is converted into heat; usually 3 is taken constant and equal to 0.9.

Equations (13)-(16) constitute four equations in the four unknowns Y,8,T,V.

In the following, we present a discussion of localization for different

constitutive laws and different boundary conditions. We consider the cases of

constant velocity boundary conditions:

55 ''',/ ... i' ... ".; . . .... >,' . ,. .- . . .. .. : "'''



S-13-

V(0,t) = 0

v(h,t) = Vo

or constant stress boundary conditions
-,

1(h)T(h,t) = I(0)T(0,t) = const. (18)

*. 3.1 Materials Without Strain-Hardeninq

An exact solution of the fully nonlinear problem has been presented by

MOLINARI and CLIFTON (1983) for the case in which the material is not strain

hardening and Eqn. (13) has the form
'

' = (8) 7m . (19)

In order to obtain this exact solution we write Eqns. (14) and (16) at two

different points A and B. Substitutions of (19) into (14) and use of (16)

to eliminate TA/7B gives

(m+1)/m.A/m (m+1)/m )1/m  dOB (20)
JA AA1mdGA = /m (20))

which, after integration, becomes

(m + 1)/m 8A r B
JA /(;)lI/m d = IS(m + 1)/m j p( )i/m d; (21)

AB

where 8 and 80 are the initial temperatures at points A and B.

From (21) it appears that Lm localization of temperature occurs at B if,

and only if, g(8)1 /m is integrable at infinity, i.e. if there exists some K >

0 for which

.7
•



-14-

K ( ) < + 
(22 )

Localization will occur at the point B where the following function, defined

for each point M of the slab,

M - 2M(N + 1)/M (;)/m d; (23)

is a minimum. At localization the temperature ec at any point A is given

by

-(( + 1)/r )/m d; (m + 1)/r n) d (24)..;A B
A

It is easy to show that L. temperature localization tends to result in

strain localization. Indeed, from the equilibrium condition (15) and the

constitutive law (19), we have

JA A(A) ) 1B A(6)y

Then, assuming temperature localization, we get

lim 7B lim JA A(A) /= +

eA'-. eA 1'A eA  A e B 9(eB)

since lim A(eB) = 0 from the integrability condition (22). This L.
6A 8A

localization of the strain rate essentially ensures L. localization of the

strain although various pathologicl cases must be excluded in a rigorous

analysis. We henceforth consider constitutive equations and loading conditions

* V

V1

o' 4
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for which such pathological cases are excluded.

Localization results obtained from the integrability condition (22) are

summarized in Table 2 for several constitutive laws.

Table 2: Localization results for visco-plastic, thermal softening

materials without strain hardening

(m > 0, go > 0, a > 0)

Constitutive law L. localization

L T = go O e7m V + m < 0

L2  T go exp(-a8) 7  a > 0

L3  T sup(a + b,0) y m  b < 0

- - L4  T go exp(-a/e) m never exhibits
L. localization

C'm-)

IIo

A-". ." ... .. ..
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3.1.1 Calculation of the critical strain

In this section we obtain explicit results for the critical strain at

localization. We illustrate the approach by considering the constitutive law

'I L2. Substituting this law in Eqn. (21), we obtain the following expression for

the temperature at a point B as a function of the temperature at a point A

6B- .=l- A1(1 + m)/m (
log exp(-aeA/m) + C (25)

where

C1 A (1 + m)M/m (26)
b.-,C 1 = exp(- e m) - exp(- AIm)

From (25), a necessary condition for localization to occur is C1 < 0
..

since for C1 ) 0 the logarithm cannot tend to infinity. Let us identify the

point B as the point where the quantity JB(m+l)/m exp(-ae8/m) is a minimum.

Then, if the initial temperature (or the width j) is non uniform, C1 is

strictly negative.

For a thermal softening material, i~e. a > 0, the quantity exp(-ca6A/m)

decreases to zero as 8 - Co. For some critical temperature ec, theA A
o

temperature 8B will become infinite. From (26), this value is

1 +m
c16 -8 O log[1 - []exp(-a(e - e )/m) ] (27)

If the material is thermal hardening, i.e. a < 0, then the term exp(-aBA/m)

grows and, from (25), it is obvious that L. localization is impossible.

J":
a'.

V " ,. .•"., 4 .. . .' ,o " .• , 4 .",".- - .,°.".... .. ."','' ... ,-.. j .... , .. "...,.
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Indeed, for sufficiently large GA, the difference

rr A )1-±-mj/a1
8B - OA log J I1B

becomes small compared to the absolute temperature, say 8A.

To calculate the critical strain from the critical temperature we

consider first the case in which a constant stress T is applied at the

boundary. Then, from the energy equation (16), 8 can be calculated as a

function of the strain 7

= -Y + go. (28)* a'N pC

The critical strain, 7j, at A is obtained by substituting the critical

temperature ec given by (27) into (28) to obtain

1 +m
"'c 1~ B m

= -- m log 1 - 1 exp(-a(8 -6 )/m) (29)

a..T

The stabilizing effects of increased strain rate sensitivity (i.e. larger m)

. and decreased thermal softening (i.e. smaller a) are evident in this

expression. The relative importance of geometrical and temperature defects is

evident from (29) which shows that the critical strain YC is the same when

('B/A) and (90 - 80) belong to the locus of values for which the argument of

the logarithm in (29) is a constant. For small values of

1A-2

d'. A

(30a)
I .A

and

B A (30b)

e e30b
,'

.',p. " , , e " " . . . . 4 . , . , t 
•

. . . . . . . . . 2 , . . . . . % . . ,
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the critical shear strain 7j is the same for defect amplitudes Ae and At that

satisfy

A - . ( 3 1 )

The critical, nominal strain at which the temperature becomes infinite at

B is obtained from the integration of the critical strain yc(yA) yc over

the height of the block. Thus, the critical, nominal strain is

h
1r

7c = I c(yA) dyA . (32)
hj

Numerical integration of (32) is straightforward as long as the thickness

2(YA) varies sufficiently slowly near the point(s) B at which the strain

becomes infinite.

We consider next the calculation of the critical strain for the case of

the velocity boundary conditions (17). An exact solution does not appear to

be possible in this case. However, a good approximate solution can be

obtained for the case of weak strain-rate sensitivity (i.e. m << 1). Such

weak strain rate sensitivity is commonly observed in metals at room

. temperature for strain rates up to 103 sec "I . Typical values of m are of the

order of m = 0.01, In order to obtain an approximate solution for small m we

introduce the mean constant strain rate

-o= V/h (33)

For small values of m we can approximate the stress T by

T o o exp(-aG) 7/m (34)
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This approximation is discussed in appendix B and a numerical evaluation will

be presented later. Substitution of the approximate stress (34) into the

energy equation (16) leads to

pC 13 go exp(-a8) /m (35)
at

This equation can be integrated by separation of the variables 6 and 7y to give

0(7) = go + -log 1 + exp(-e°) y ] (36)

a pC

where 60 is the initial temperature.

With the relationship between 6 and / given by (36), the critical strain,

cA, at A can be obtained by integration of the equilibrium equation (14). Such

integration gives

/m  exp(-8A()/m) d 1 B exp(-a8B(7)/m) d7 (37)

0 0

with 8A(7) and 8B(7) given by (36). At localization, 7B becomes infinite and

the critical strain 7A at point A becomes, for m << 1,

-m/(l-m)II I Im
= PC 1B 11/mY - -- exp(-a(]-m)(e - - 1 (38)

@ nA

where

0TA go exp(-a8e)

is the shear stress at A in an isothermal deformation at the same strain rate.

If i and 80 are both uniform, then Eqn. (38) implies that 7y is infinite and

localization does not occur. The critical strain decreases as (IB/RA)

..

4..
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decreases and e8 -8e increases. The energy measure, To -/, of the critical

strain increases with increasing strain rate sensitivity (i.e. increasing m)

and decreasing thermal softening (i.e. decreasing a). Again, the nominal

critical strain is obtained by the substitution of (38) into (32). Comparison

of (38) and (29) indicates that, for m << 1, the relationship (31) between

equivalent temperature defects A8 and geometric defects Ai holds for velocity

boundary conditions as well as for constant stress boundary conditions.

A"A

"2: Further understanding of the dependence of the critical strain y on the

defect can be obtained by introducing the defect parameter

o1
x = 1 - - exp (-a(e - e0)). (39)

In terms of X the critical strain, for m << 1, is given by

Pc 17A- -l- )S/0]-rnj . (38)'
A0T°

For sufficiently small defects (i.e. 0 < x << m << 1) this expression can be

approximated by

-m

. [ ] (40a)

or, alternatively,

,. pC
"/ - [-m log x + const.] (40b)

A

where the constant is chosen such that (38) and (40b) give the same value for

.j4

-o*"&-.
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'Y, for one value of x in the interval of interest. From (40b) it is evident

that the critical strain depends weakly on the defect parameter for

sufficiently small defects. For values of m that are characteristic of steels

(e.g. 0.01 < m < 0.02) the approximate relation (40b) provides a satisfactory

representation of the dependence of 7A on X over three decades of variation of

X for X < 0.2 m.

Identical calculations can be performed for a power law dependence of the

flow stress on the temperature. Analogous results for the constitutive law

L, of Table 2 are

I+ m vm"c" 1 m + m

-CO I - -- 3 -i (41a)

- for constant stress boundary conditions, and

1 v+m(1-v) (1-v)m

= (:-v)L5TA {lO M v+n(1-V) -1 (41b)

for constant velocity boundary conditions; Eqn. (41b) holds only for m << 1.

3.2 Materials with Strain Hardening

Strain hardening cannot be ignored for most materials. In this section

we derive analytical localization criteria for constitutive laws of the form

T :(G) (7 + 7o)n 7 m (42)

where 70 is the initial strain. The approach is similar to that used in

Section 3.1.

-n ,o. -.

• , .. ,

*.*-. -*,",.. . ". .*p.-'.. ,. "...
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3.2.1 Stress boundary condition

Elimination of 7 between the constitutive law (42) and the energy

equation (16) leads to

m+ 1
dO 3Trn -1/m -n/mAM .8 (7 +  7 )  ( 43)
dt pC

We write (43) at two different points A and B, take account of the equilibrium

equation (14), use (28) to eliminate /, and integrate to obtain

m + 1 OA
1/m pC n/m

[.I
-'-+ m+/1

RAA A

B..+ ,(44)

m + 1 [

B 1/B J BPC 0 ]n/n

B3TB

Equation (44) is a generalization of (21) to strain hardening materials.

Analysis of (44) analogous to that of (21), shows that L( localization occurs

if and only if the function

()1/n -0) PC n/rn8l 0 g(a) (8 - 0 ) - + Y °

• " 13"T

is integrable at infinity. For the constitutive law

-r = Ul ev (7 + )o)n 7rn (45)

* , *9i**'**~ * ** ~ -*. - , - *-- -
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L. localization occurs if and only if

v +n+ m <O0 (46)

The inequality (46) provides a good illustration of the competition between

the stabilizing effects of strain hardening (n > 0) and positive strain rate

sensitivity (m > 0), and the destabilizing effects of thermal softening

-(v < 0). The localization criteria (46), obtained by MOLINARI and CLIFTON

* (1983), has also been obtained by FRESSENGEAS and MOLINARI (1986) as the

* . criterion for the initial arowth of a fluctuation based on a linear relative

perturbation analysis. The inequality (46) differs from the condition

v +n < 0 (47)

that must be satisfied for the initial growth of a fluctuation according to

absolute linear perturbation analysis. The difference between the conditions

(46) and (47) illustrates the tendency for absolute linear perturbation

analysis to predict growth of fluctuations under some conditions for which the

* full nonlinear analysis predicts that localization will not occur.

For the constitutive law

T Poi e-a(7/ + 7o)n 7m (48)

a similar analysis shows that L,, localization occurs if and only if a > 0

(thermal softening). For this constitutive equation the critical strain /C at

A when the strain at point B becomes infinite is obtained by the substitution

Mof (48) into (44) to obtain, after a change of variable,

M6. % .. . . . * . . . . .
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KA  e-V vn/n dv = KB e-' Vn/m dv (49)

0 .70
YA YB

where

ci0 TAc+0 O0 = 0
7A - MA +10) no'A A

mpC mpC

1+n+m

KA = 'A

with A replaced by B for 7B and KB. Localization will occur at the point B,

where the quantity on the right side of (49) is a minimum.

Equation (49) has the same form as that obtained by HUTCHINSON and NEALE

(1977) in the study of the rupture of a viscoplastic bar in tension although

the physical effects being modeled are different - their analysis included

necking, but did not include the thermal softening which is included here.

3.2.2 Velocity boundary conditions

As in section 3.1 we consider constant velocity boundary conditions and

assume that the strain rate sensitivity of the material is small

(i.e. m << 1). To calculate the temperature from the energy equation (16) we

replace y by /o = V/h in the constitutive equation (42) and integrate to obtain

I - d- (7 + °)n+l - (70)n+l  (50)
e pC (n + 1)

fnb Ihi.*-
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Substitution into (50) of functions g(6) that model the temperature

dependence of the flow stress gives the required relationship between the

temperature 6 and the shear strain 7. For g(8) = ge v we obtain

;. 17 = 60 1 + (1 - v) _ 1 _( + 7 °)n+ l  (y0°)n+l ]-v (51)

pC (n + 1)(e°)

i*: and for g(e) = go e-ae we obtain

go 'Y' e-a S0o]
a 0 + yon~ -eo n

G(7) = 0 + - log 1 + (x + 7 °)n+1 -(7°) n'l . (52)
a pC (n + 1)

These equations provide an approximate relationship between the temperature

and the strain at each position as long as the exponent m is sufficiently

small for the dependence of the shear stress on strain rate to be represented

by -y, where x0 is the nominal strain rate, instead of by 9, where y is the

local strain rate.

In order to investigate the critical conditions for localization, we

substitute the functions 0(y) obtained from (51) or (52) into the equation

/A1/(A(m) (m + )f)n/m dt

(53)

1/m (B )/m (t + 70)n/m dB (B(M) B)

0

O
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As before, L. localization occurs if, and only if, the integral on the right

side of (53) remains bounded as YB--. For 8(/) given by Eqn. (51), the

condition for L. localization becomes

v + n + m (l-v) < 0 (54)

for 0 < m << 1, and v < 1. This condition is slightly more restrictive than

the condition (46) obtained for stress boundary conditions. That is, the

tendency for localization is slightly stronger for stress boundary conditions

than for velocity boundary conditions in that the localization condition (46)

is satisfied by all v,m, and n which satisfy (54); however, for m << 1, the

V. terms involving m in both (46) and (54) are often so small that, effectively,

the localization conditions (46) and (54) are the same. For 8(Y) given by

do Eqn. (52) the condition for L,. localization is satisfied for all > 0

provided that m, n satisfy m > 0, n > -1.

'p
""'

-° -

N.:i



-27-

4. Numerical Example

Dynamic torsion experiments for investigating shear localization have

been performed by HARTLEY et al. (1986) on two different types of steel: CRS

1018 and HRS 1020. At the strain rates (103s -1) and temperatures (00 = 3000K)

of these experiments the behavior of these materials can be represented

reasonably well by a constitutive equation of the form (45). Numerical values

*of the various parameters in the model are given in Table 3 (SHAWKI (1986)).

The strain y° is taken to have the value 0.01 for both steels. More detailed

fitting of the plastic response of these steels has been presented by

KLEPACZKO (1986).

Table 3 Thermomechanical Properties of CRS 1018 and HRS 1020 Steels

Steel CRS 1018 HRS 1020

*Parameter

v - 0.38 - 0.51

n 0.015 0.12

m 0.019 0.0133

p 7800 kg/m3  7800 kg/n3

C 500 J/kg0 K 500 J/kg K

ILI 3579 x 106S.I. 7587 x 106 S.I.

Variations i(y) in the wall thickness of the specimens were not reported

by HARTLEY (1986). Subsequently, DUFFY (1986) has sectioned specimens used in

such experiments to determine the variation in wall thickness, both along the

length of the specimen and around its circumference. For CRS 1018 the wall

S .

," . 5 :- ..-,..: . -...-.-.... ...-.,,., , ...-, .,- - -,-.,,_- :_ ,-.-- s ,:. .,f -.- aa . _-4.- 2 -,
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thickness is relatively uniform around the circumference, but strong variation

- up to 10% - occur along the length of the specimen. For the purpose of this

numerical example we take the geometrical factor (B/9A) in the preceding

-' analysis to be a parameter that varies from 0.9 to 0.999. In order to relate

the critical strains -y to the nominal strain -c at localization (see Eqn.

(32)), the variation in wall thickness JA = i(YA) must be prescribed over the

entire length of the specimen. Based on the general appearance of the

" sectioned specimens we take this variation to have the form

2(y) E 2ny
,_ - I + - (cos - - 1) (55)
2A 2 h

where E is a geometrical parameter that is taken to vary from 10-1 to 10-6 to

give the range of values of 0.9 to 0.999999 for 2B/IA.

Boundary conditions for the dynamic torsion ("torsional Kolsky bar")

experiment are effectively those of imposed constant velocity at the ends of

the specimen. Hence, we use the solution for velocity boundary conditions

given by Eqns. (51) and (53). The restriction to m<<1 that is required in

obtaining (51) is well satisfied by the values m = 0.019 for the CRS and

m = 0.0133 for the HRS. Evaluation of 7C(yA) from (53) and integration over

the length of the specimen, according to (32) gives the dependence of the

critical strain 7c on the geometrical imperfection parameter E that is shown

in Figs. 4 and 5. For small c the nominal critical strain varies

approximately as log E, as predicted for the local critical strain by Eqn.

(40b). In each figure the insert provides an expanded scale of the region of

primary interest in the interpretation of torsional Kolsky bar experiments.

For one value of c (E = 0.02), the strain distribution at localization for CRS

1018 is shown in Fig. 6. The width of the band of intense shear (say, the

-o "1
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region for which -y(y) > 3-/(0)) is approximately 20% of the length of the

specimen. Such relatively wide bands are observed in CRS 1018 (HARTLEY et al.

(1985)). The predicted nominal stress-strain curves for the two steels, with

the geometrical imperfection parameter E equal to 0.02, are shown in Figs. 7

and 8; a corresponding curve for E = 0.04 is included in Fig. 8. The

general features of the curves include a slowly rising segment during which

the shearing is quite uniform, a slowly falling segment during which a broad

band of enhanced shearing develops, and a sharply falling segment during which

the shearing becomes intensely localized in a band. These general features are

characteristic of the experimental records obtained in such experiments

* (HARTLEY, et al. (1986)). Numerical values for the strain at the peak of the

stress-strain curve and the strain at the beginning of the sharp decline in

stress are comparable to values obtained in experiments. However, the

predicted rate of sharp decline is greater than normally measured. This rate

of decline is affected by the detailed geometry of the initial imperfection

which probably was not modeled adequately by the generic form (55) usdA to

model the imperfection. Other difficulties with comparisons between theory

and experiment in the steeply falling part of the curve include: (i) the

inadequacy of the assumption that the stress obtained using the nominal strain

rate can be used in calculating the local rate of energy dissipation, (ii) the

likelihood that the final localization varies so strongly around the

circumference of the specimen that a one-dimensional analysis is

* inappropriate; and (iii) the lack of constant velocity boundary conditions

when the stress decreases strongly in torsional Kolsky bar experiments.
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5. Conclusion

By assuming the deformation to be adiabatic and quasi-static, and by

neglecting elasticity effects, we have characterized, analytically, the

critical conditions for shear strain localization in simple shear. The

assumed conditions are good approximations for the specimen sizes and strain

rates that are commonly used in torsional Kolsky bar experiments on shear band

formation in steels.

We assume the existence of initial inhomogeneities which are either

georetrical defects or non-uniform fields of initial temperature or strain.

The localization strain is obtained as a function of these defects, the

n,,aterial parameters and the boundary conditions. Two types of boundary

conditions have been considered:

- constant applied stress

- constant applied velocity;

in the latter case, the analytical results are restricted to materials with

weak strain rate sensitivity.

The results are particularly simple for materials without strain

hardening. In this case, explicit expressions are obtained for the dependence

of the critical strain on a defect parameter that characterizes the

geonetrical defect and the nonuniformity of the initial temperature. For

materials with weak strain rate sensitivity the critical strain depends weakly

(essentially logarithmically) on the amplitude of the imperfection for small

imperfections.

Co7-aris-n of predictions of the theory with experimental results for a

cold-rolled steel shows good agreement in the qualitative features of the

response. Quantitative comparisons require detailed descriptions of the

geonetrical defects of the specimens used in the experiments. Preliminary

7-

4?4
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comparisons based on approximate representations of the geometrical

imperfections of the specimens suggest that good quantitative agreement may be

obtained once the defects are modeled accurately.
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Appendix A

Consider two piece-wise continuous functions g and h. The function g(x)

is positive and nonintegrable at infinity,i.e. fo+ g(;) d; = + . If the

function h(;) is equivalent to g(;) at infinity (i.e. lim h(;)/g(;) = 1), then

(DIEUDONNE (1968));x f
h(;) d; g(;) d; , as x -. . (Al)

a a

With the choices h(;) = f(;)l/m and g(;) = al/m ;-p/m we have, from Eqn. (4),

h - g. Then Eqns. (3) and (Al) imply that for m - p > 0 we have

m M
0 21/m al/m YA(M-P)/m ~B/m al/m B(m-p)/M (A2)

- rn-p rn-p

since, when 7 A tends to infinity, 7 B must also tend to infinity. From (A2) it

follows that

lim (YB//A) = (RA/B)/(m-P) (A3)

-p.

,{J.

0o.:o
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ADendix B

During the localization process the local strain rate - will differ from

the nominal strain rate yo = V/h. As a measurement of this difference we

.. define the ratio

We want to evaluate the acceptability of the approximation of replacing the

stress

T = g e-  8 7m (B2)

by the quantity

T= e- 0 (B3)

in calculating the heat generated by plastic working. For m = 0.01, the ratio

/TO = Xm is bounded by 0.955 < T/T O < 1.071 for x in the interval [10-3

103]. Thus, using the approximate stress T o leads to a maximum error of 7%

'/ for a variation in strain rate of six orders or magnitude.
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Figure 1: Specimen Geometry and Loading Condition.

Figure 2: Localization Phenomena for f(7)-a -fP as y-w.

Figure 3: Localization Phenomena for f(y)-L as 7-.

Figure 4: Dependence of the Nominal Critical Strain on the Initial
I-perfection for CRS 1018.

. Figure 5: Dependence of the Nominal Critical Strain on the Initial
Imperfection for HRS 1020.

Figure 6: Strain Distribution at Localization for CRS 1018 (E = 0.02).

* Figure 7: Nominal Stress-Strain Curve for Simple Shear of CRS 1018
(E = 0.02).

Figure 8: Nominal Stress-Strain Curves for Simple Shear of HRS 1020.
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